Development of magnesium calcium phosphate biocement for bone regeneration.
نویسندگان
چکیده
Magnesium calcium phosphate biocement (MCPB) with rapid-setting characteristics was fabricated by using the mixed powders of magnesium oxide (MgO) and calcium dihydrogen phosphate (Ca(H(2)PO(4))(2).H(2)O). The results revealed that the MCPB hardened after mixing the powders with water for about 7 min, and the compressive strength reached 43 MPa after setting for 1 h, indicating that the MCPB had a short setting time and high initial mechanical strength. After the acid-base reaction of MCPB containing MgO and Ca(H(2)PO(4))(2).H(2)O in a molar ratio of 2 : 1, the final hydrated products were Mg(3)(PO(4))(2) and Ca(3)(PO(4))(2). The MCPB was degradable in Tris-HCl solution and the degradation ratio was obviously higher than calcium phosphate biocement (CPB) because of its fast dissolution. The attachment and proliferation of the MG(63) cells on the MCPB were significantly enhanced in comparison with CPB, and the alkaline phosphatase activity of MG(63) cells on the MCPB was significantly higher than on the CPB at 7 and 14 days. The MG(63) cells with normal phenotype spread well on the MCPB surfaces, and were attached in close proximity to the substrate, as seen by scanning electron microscopy (SEM). The results demonstrated that the MCPB had a good ability to support cell attachment, proliferation and differentiation, and exhibited good cytocompatibility.
منابع مشابه
Magnesium substitution in brushite cements for enhanced bone tissue regeneration.
We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in compariso...
متن کاملCRYSTALLIZATION AND SINTERABILITY BEHAVIOR OF BIORESORBABLE CaO-P2O5-Na2O-TiO2 GLASS CERAMICS FOR BONE REGENERATION APPLICATION
Abstract:Some types of glass and glass ceramics have a great potential for making bone tissue engineering scaffolds, drug carrier and bone cements as they can bond to host bone, stimulate bone cells toward osteogenesis, and resorb at the same time as the bone is repaired. Calcium phosphate glass ceramics have very attractive properties that allow them to use in bone tissue engineering. Calcium ...
متن کاملEffect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement
In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...
متن کاملEffect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.
Various calcium phosphate based coatings have been evaluated for better bony integration of metallic implants and are currently being investigated to improve the surface bioactivity of polymeric scaffolds. The aim of this study was to evaluate the role of calcium phosphate coating and simultaneous delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the in vivo bone regenerat...
متن کاملThe effect of platelet-rich plasma on human mesenchymal stem cell-induced bone regeneration of canine alveolar defects with calcium phosphate-based scaffolds
Objective(s): Autologous bone transplantation known as the “gold standard” to reconstruction of osseous defects has known disadvantages. This study was designed to explore the effects of hydroxy-apatite/tricalcium-phosphate (HA/TCP) and platelet-rich plasma (PRP) on the osteogenesis ability of human adipose-derived mesenchymal stem cells (hAdMSCs) in vitro and in vivo. Materials and Methods: hA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 7 49 شماره
صفحات -
تاریخ انتشار 2010